Saturday, July 14, 2012

Forests losing soil carbon to the CO2 Effect


Increasing atmospheric carbon dioxide accelerates soil carbon loss in forests, new research has found. Carbon stored in soils, as opposed to in the wood of trees, is desirable in that soils are more stable over time, so carbon can be locked away for hundreds to thousands of years and not contribute to atmospheric carbon dioxide increases. But new evidence supports an emerging view that although forests remove a substantial amount of carbon dioxide from the atmosphere, much of the carbon is being stored in living woody biomass rather than as dead organic matter in soils. The research was conducted at the Duke Forest Free Air Carbon Dioxide Enrichment site in North Carolina, where mature pine trees were exposed to increased levels of carbon dioxide for 14 years. Indiana University biologist Richard P. Phillips, said, "It's been suggested that as trees take up more carbon dioxide from the atmosphere, a greater amount of carbon will go to roots and fungi to acquire nutrients, but our results show that little of this carbon accumulates in soil because the decomposition of root and fungal detritus is also increased. Nitrogen cycled faster in this forest as the demand for nutrients by trees and microbes became greater under elevated CO2. "The growth of trees is limited by the availability of nitrogen at this site, so it makes sense that trees are using the 'extra' carbon taken up under elevated CO2 to prime microbes to release nitrogen bound up in organic matter," Phillips said. "What is surprising is that the trees seem to be getting much of their nitrogen by decomposing root and fungal detritus that is less than a year old." 
“Microbial priming” is a process where soil microbes are stimulated to decompose old soil organic matter via an increase in new carbon and other energy sources, and the faster turnover of recently fixed root and fungal carbon.
"We call it the RAMP hypothesis -- Rhizo-Accelerated Mineralization and Priming -- and it states that root-induced changes in the rates of microbial processing of carbon and nitrogen are key mediators of long-term ecosystem responses to global change," Phillips said. "Most ecosystem models have limited representations of roots, and none of them include processes such as priming. Our results demonstrate that interactions between roots and soil microbes play an underappreciated role in determining how much carbon is stored and how fast nitrogen is cycled. So including these processes in models should lead to improved projections of long-term carbon storage in forests in response to global environmental change'" he said.


 PHOTO Will Owens, Indiana University

No comments: